Comment construire un cône géométrique? | Loisirs | aclevante.com

Comment construire un cône géométrique?




Bien qu'il soit impossible d'obtenir des exemples physiques d'un cône géométrique en tant que tel, deux capots placés bout à bout, un cône géométrique n'est pas quelque chose que vous pouvez construire au sens littéral. Il s’agit plutôt d’une construction mathématique définie par un ensemble spécifique de règles mathématiques. C'est également l'élément fondamental utilisé pour construire un autre ensemble de constructions mathématiques appelées "sections coniques", dont la plupart ont des noms familiers: cercle, ellipse, parabole et hyperbole.

Tracez une ligne verticale sur votre papier. C'est ce qu'on appelle l'axe de votre cône géométrique.

Tracez une seconde ligne presque aussi longue qu'elle croise la verticale à n’importe quel angle. Ceci est le générateur de votre cône géométrique.

Dessinez un exemple visuel de ce que vous obtiendriez si vous tourniez le générateur autour de l’axe et revenez à sa position initiale. Tracez une seconde ligne qui croise l’axe au même angle que le générateur, juste en diagonale par rapport à l’autre direction. Maintenant, vous devez avoir deux cônes sans le fond et sans toucher les points.

Notez que le haut et le bas de la surface du cône géométrique s’étendent à l’infini. En d'autres termes, le cône n'a ni haut ni bas. La surface procède simplement dans chacune des deux directions opposées. Ceci est, dans son intégralité, une construction mathématique d'un cône géométrique.

Article Précédent

Animaux sauvages de la jungle

Article Suivant

Comment calculer le volume en litres